CORC Report TR-2006-03

Approximate formulations for 0-1 knapsack sets

Daniel Bienstock

Columbia University, New York, NY 10027

September 2006

Abstract

A classical theorem in Combinatorial Optimization proves the existence of *fully polynomial*time approximation schemes for the knapsack problem [2], [3]. In a recent paper [4], Van Vyve and Wolsey ask whether for each $0 < \epsilon \leq 1$ there exists an extended formulation for the knapsack problem, of size polynomial in the number of variables and/or ϵ^{-1} , whose value is at most $(1+\epsilon)$ times the value of the integer program. In this note we partially answer this question in the affirmative, using techniques similar to those in [1].

1 Introduction

Consider the feasible set for a 0-1 knapsack problem,

$$\sum_{j=1}^{n} a_j x_j \leq a_0, \quad x \in \{0, 1\}^n, \tag{1}$$

where $a_j \ge 0$ for $0 \le j \le n$. Here we prove the following result:

Theorem 1.1 Let $0 < \epsilon \leq 1$. There exists an extended formulation

$$Ax + By + Cz \leq b, \tag{2}$$

with $O\left(\epsilon^{-1}n^{1+\lceil 1/\epsilon\rceil}\right)$ variables and $O\left(\epsilon^{-1}n^{2+\lceil 1/\epsilon\rceil}\right)$ constraints such that $\left\{x \in \{0,1\}^n : \sum_{j=1}^n a_j x_j \le a_0\right\} \subseteq \left\{x \in \mathbb{R}^n : \exists (y,z) \, s.t. \, Ax + By + Cz \le b\right\}, \quad (3)$

and for any $w \in \mathbb{R}^n_+$,

$$\max\left\{w^{T}x: \sum_{j=1}^{n} a_{j}x_{j} \leq a_{0}, x \in \{0, 1\}^{n}\right\} \geq (1-\epsilon) \max\left\{w^{T}x: \exists (y, z) \, s.t. \, Ax + By + Cz \leq b\right\}.$$

2 The construction

Let $H = \left| \frac{1}{\epsilon} \right|$. We assume $n \ge H$. The variables y, z in the theorem are constructed as follows.

(a) For each integer $0 \le h < H$, and each subset $S \subseteq \{1, 2, ..., n\}$ with |S| = h, we have variables y_i^S , for $0 \le j \le n$, as well as the constraints:

$$y_j^S \ge 0, \ 0 \le j \le n, \tag{4}$$

$$y_j^S - y_0^S = 0, \ \forall j \in S,$$
 (5)

$$y_j^S = 0, \ \forall j \notin S \cup \{0\}, \tag{6}$$

$$\sum_{j=1}^{n} a_j y_j^S - a_0 y_0^S \le 0.$$
⁽⁷⁾

(b) For each each subset $S \subseteq \{1, 2, ..., n\}$ with |S| = H, we have variables z_j^S , for $0 \le j \le n$, as well as the constraints:

$$z_j^S \ge 0, \ 0 \le j \le n, \tag{8}$$

$$z_j^S \le z_0^S, \ 1 \le j \le n, \tag{9}$$

$$z_j^S - z_0^S = 0, \ \forall j \in S, \tag{10}$$

$$z_j^S = 0, \text{ if } j \notin S \cup \{0\} \text{ and } a_j > \min_{i \in S} \{a_i\},$$
 (11)

$$\sum_{j=1}^{n} a_j z_j^S - a_0 z_0^S \le 0.$$
(12)

(c) In addition, we have the constraints:

$$\sum_{S} y_j^S + \sum_{S} z_j^S - x_j = 0, \ 1 \le j \le n,$$
(13)

$$\sum_{S} y_0^S + \sum_{S} z_0^S = 1.$$
 (14)

where these sums are understood to run over appropriate indices as defined in (a) and (b).

Lemma 2.1 Constraints (4)-(14) define a valid relaxation for (1), i.e. the projection of the feasible set for (4)-(14) to the space of the x variables contains the feasible set for (1).

Proof. Consider a 0-1 vector \hat{x} satisfying (1). Let $\hat{S} = \{1 \le j \le n : \hat{x}_j = 1\}$.

Suppose first that $|\hat{S}| < H$. Then we define $y_j^{\hat{S}} = \hat{x}_j$ for $1 \le j \le n$, and $y_0^{\hat{S}} = 1$; and set $y_j^S = 0$ for all other sets S and all j, and all $z_j^S = 0$. Note that this argument is correct even when $\hat{S} = \emptyset$.

Suppose now that $|\hat{S}| > H$. Let $\bar{S} \subset \hat{S}$ consist of the H indices $j \in \hat{S}$ with largest a_j (ties arbitrarily broken). Then we set $z_j^{\bar{S}} = 1$ for all $j \in \hat{S}$, $z_0^{\bar{S}} = 1$, and set $z_j^{\bar{S}} = 0$ for all other combinations of S and j; and all $y_j^{\bar{S}} = 0$.

Write $W^* = \max \left\{ w^T x : \sum_{j=1}^n a_j x_j \le a_0, x \in \{0, 1\}^n \right\}.$

Lemma 2.2 Suppose $(\hat{x}, \hat{y}, \hat{z})$ satisfy (4)-(14). Let $w \in \mathbb{R}^n_+$. Then

(i) For any set S included in case (a) of the construction,

$$W^* \hat{y}_0^S \ge \sum_{j=1}^n w_j \hat{y}_j^S.$$
 (15)

(ii) For any pair k, S included in case (b) of the construction,

$$W^* \hat{z}_0^S \ge (1-\epsilon) \sum_{j=1}^n w_j \hat{z}_j^S.$$
 (16)

Proof. (i) If $\hat{y}_0^S = 0$ the result is clear, and if $\hat{y}_0^S > 0$ then the 0 - 1 vector with entries $\hat{y}_j^S / \hat{y}_0^S (1 \le j \le n)$ satisfies (1) from which the result follows.

(ii) As in (i) assume that $\hat{z}_0^S > 0$, and define $\bar{x}_j = \hat{z}_j^S / \hat{z}_0^S$ for $1 \le j \le n$. By construction in case (b), we have that \bar{x} is a feasible solution to the linear program:

$$\tilde{W} \doteq \max \sum_{j=1}^{n} w_j x_j \tag{17}$$

$$0 \le x_j \le 1, \ 1 \le j \le n, \tag{19}$$

$$x_j = 1, \ \forall j \in S, \tag{20}$$

$$x_j = 0, \text{ if } j \notin S \text{ and } a_j > \min_{i \in S} \{a_i\},$$

$$(21)$$

$$\sum_{j=1}^{n} a_j x_j \leq a_0. \tag{22}$$

Thus, in order to conclude with case (ii) it suffices to prove that $W^* \ge (1 - \epsilon)\tilde{W}$. To this end, let \tilde{x} be an extreme point optimal solution to the LP (17)-(22). We assume \tilde{x} is not integral for otherwise the result is clear.

Clearly, there exists exactly one index p such that $0 < \tilde{x}_p < 1$.

Let $i = \operatorname{argmin}_{j \in S} \{w_j\}$, and suppose that $w_i < w_p$. Then we increase \tilde{x}_p by $1 - \tilde{x}_p$, decrease \tilde{x}_i by $1 - \tilde{x}_p$, and reset $S \leftarrow S - \{i\} \cup \{p\}$. By (21), we have $a_i \ge a_p$. Thus, after the change, the vector \tilde{x} still satisfies (22), as well as (19). Moreover, the objective value of \tilde{x} has increased.

Thus (whether the change was performed or not), we have:

- (C.1) $0 < \tilde{x}_q < 1$ for one entry q,
- (C.2) There is a set S with |S| = H such that $\tilde{x}_i = 1$ for all $i \in S$. and if an index q as in (C.1) exists, then $w_q \leq \min_{i \in S} \{w_i\}$.
- (C.3) \tilde{x} satisfies (22),
- (C.4) $\sum_{j} w_j \tilde{x}_j \ge \tilde{W}$.

Consider the 0-1 vector \tilde{x} defined by $\tilde{x}_j = \lfloor \tilde{x}_j \rfloor$ for $1 \leq j \leq n$. By (C.3) this vector is feasible for the knapsack constraint (1). Furthermore, by (C.1) and (C.2), we have that

$$\frac{\sum_{j} w_{j} \tilde{x}_{j} - \sum_{j} w_{j} \tilde{x}_{j}}{\sum_{j} w_{j} \tilde{x}_{j}} \leq \frac{1}{H} \leq \epsilon, \qquad (23)$$

and therefore

$$(1-\epsilon)\sum_{j} w_{j}\tilde{x}_{j} \leq \sum_{j} w_{j}\tilde{x}_{j} \leq W^{*}, \qquad (24)$$

as desired. \blacksquare

Lemma (2.2), together with constraints (13) and (14) of our system, complete the proof of Theorem 1.1.

References

- D. Bienstock and M. Zuckerberg, Subset Algebra Lift Operators for 0-1 Integer Programming, SIAM J. Optimization 15 (2004) 63-95.
- [2] O.H. Ibarra and C.E. Kim, Fast Approximation Algorithms for the Knapsack and Sum of Subsets Problems, J. ACM 22 (1975) 463-468.
- [3] E.L. Lawler, Fast Approximation Schmes for Knapsack Problems, Proc. 18th. FOCS (1977) 206-213.
- [4] M. Van Vyve and L.A. Wolsey, Approximate extended formulations, Math. Program. 105 (2006) 501-522.