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Abstract

A classical theorem in Combinatorial Optimization proves the existence of fully polynomial-
time approzimation schemes for the knapsack problem [2], [3]. In a recent paper [4], Van Vyve
and Wolsey ask whether for each 0 < € < 1 there exists an extended formulation for the knapsack
problem, of size polynomial in the number of variables and /or ¢!, whose value is at most (1+¢)
times the value of the integer program. In this note we partially answer this question in the
affirmative, using techniques similar to those in [1].

1 Introduction

Consider the feasible set for a 0 — 1 knapsack problem,
n
Y ajz; < ag, x € {0, 11", (1)
j=1

where a; > 0 for 0 < j < n. Here we prove the following result:

Theorem 1.1 Let 0 < e < 1. There exists an extended formulation
Az + By + Cz < b, (2)

with O (e*1n1+(1/4) variables and O (e*1n2+f1/ﬂ) constraints such that
x e {0,1}" : Zaj:rj <app € {xeR": Iy, z2) st Ax + By + Cz < b}, (3)
j=1

and for any w € R},

max { w! z : Zajxj < ap, z € {0,1}"» > (1 —e)max{wa : Ay, 2)s.t.Ar + By + Cz < b}.
j=1

2 The construction

Let H = EW We assume n > H. The variables y, z in the theorem are constructed as follows.

(a) For each integer 0 < h < H, and each subset S C {1,2,...,n} with |S| = h, we have variables
yJS, for 0 < 57 < n, as well as the constraints:

y5 >0, 0<j<n, (4)
yi —yy =0, VjeSs, (5)
y5 =0, Vj¢su{o}, (6)

> ajyf — agyy < 0. (7)
i=1



(b) For each each subset S C {1,2,...,n} with |S| = H, we have variables z ,for 0 <j <n,as
well as the constraints:

2 >0, 0<j<n, (8)
2 <z, 1<j<m, 9)
2 — 2 =0, VjeS, (10)
JS:O, ifj ¢ SU{0} and aj>m1n{az} (11)
Z —(IOZO SO (12)

(¢) In addition, we have the constraints:
doyi + Dz —w =0, 1<j<n, (13)
S S
Svs + > % =L (14)
S S

where these sums are understood to run over appropriate indices as defined in (a) and (b).

Lemma 2.1 Constraints (4)-(14) define a valid relazation for (1), i.e. the projection of the feasible
set for (4)-(14) to the space of the x variables contains the feasible set for (1).

Proof. Consider a 0-1 vector & satisfying (1). Let S = {1 <j <n : #; = 1}.
Suppose first that ]5’] < H. Then we define yf =2 for 1 < j<mn, and yf? =1; and set y]S =0
for all other sets .S and all j, and all zf = 0. Note that this argument is correct even when S=0.
Suppose now that |S| > H. Let S C S consist of the H indices j € S with largest a; (ties arbi-
trarily broken). Then we set zf —1foralljeb, z§ =1, and set ZJS = 0 for all other combinations
of S and j; andallyf:().l

Write W* = max {wa D2 joajry < ag, ¥ € {0, 1}"}

Lemma 2.2 Suppose (Z,9,2) satisfy (4)-(14). Let w € R}. Then

(i) For any set S included in case (a) of the construction,

W*gs > > w;igs. (15)

(ii) For any pair k,S included in case (b) of the construction,
W*z5 > (1—e) Z (16)

Proof. (i) If §5§ = 0 the result is clear, and if 5 > 0 then the 0 — 1 vector with entries ¥; 2198
(1 <j < n) satisfies (1) from which the result follows.

(ii) As in (i) assume that 25 > 0, and define z; = 25 9/28 for 1 < j < n. By construction in case
(b), we have that Z is a feasible solution to the hnear program:
n
W = max Z wjT; (17)
j=1
Quvbiect to: (1R)



0<z; <1, 1<j<n, (19)

zj =1, Vjes, (20)
z; =0, ifj ¢ S and a; > néigl{ai}, (21)
Zajxj S ag. (22)
j=1

Thus, in order to conclude with case (ii) it suffices to prove that W* > (1 —€)W. To this end,
let Z be an extreme point optimal solution to the LP (17)-(22). We assume Z is not integral for
otherwise the result is clear.

Clearly, there exists exactly one index p such that 0 < 7, < 1.

Let ¢ = argmin;¢ s{w;}, and suppose that w; < wy,. Then we increase Z, by 1 — &, decrease
Z; by 1 — Z,, and reset S« S — {i} U{p}. By (21), we have a; > a,. Thus, after the change, the
vector Z still satisfies (22), as well as (19). Moreover, the objective value of Z has increased.

Thus (whether the change was performed or not), we have:

(C.1) 0 < Z4 <1 for one entry g,

(C.2) There is a set S with |S| = H such that ; = 1 for all i € S. and if an index ¢ as in (C.1)
exists, then wy, < min;eg{w;}.

(C.3) 7 satisfies (22),
(04) Zj w]'.i'j Z W

Consider the 0 — 1 vector Z defined by Z; = [Z;] for 1 < j < n. By (C.3) this vector is feasible for
the knapsack constraint (1). Furthermore, by (C.1) and (C.2), we have that

ijji”j - ijj"%j < 1

~ < e 23
225wy = H (23)

and therefore
(1—¢) iji“j < ij@j < W, (24)
J J

as desired. W
Lemma (2.2), together with constraints (13) and (14) of our system, complete the proof of
Theorem 1.1.
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