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Abstract

In this paper we study robust convex quadratically constrained programs, a subset of the

class of robust convex programs introduced by Ben-Tal and Nemirovski [4]. Unlike [4], our

focus in this paper is to identify uncertainty structures that allow the corresponding robust

quadratically constrained programs to be reformulated as second-order cone programs. We

propose three classes of uncertainty sets that satisfy this criterion and present examples where

these classes of uncertainty sets are natural.

1 Problem formulation

A generic quadratically constrained program (QCP) is defined as follows.

minimize cTx

subject to xTQix+ 2qTi x+ γi ≤ 0, i = 1, . . . , p,
(1)

where the vector of decision variables x ∈ Rn, and the data c ∈ Rn, γi ∈ R, qi ∈ Rn and

Qi ∈ Rn×n, for all i = 1, . . . , p. Note that without any loss of generality one may assume that the

objective is linear. The QCP (1) is a convex optimization problem if and only if Qi º 0 for all

i = 1, . . . , p, where Q º 0 denotes that the matrix Q is positive semidefinite.

Suppose Q º 0. Then Q = VTV for some V ∈ Rm×n and the quadratic constraint xTQx ≤
−(2qTx+ γ) is equivalent to the second-order cone (SOC) constraint [2, 18, 22]

∥∥∥∥∥

[
2Vx

(1 + γ + 2qTx)

]∥∥∥∥∥ ≤ 1− γ − 2qTx. (2)
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Thus, the convex QCP (1) is equivalent to the following second-order cone program (SOCP)

minimize cTx

subject to

∥∥∥∥∥

[
2Vix

(1 + γi + 2qTi x)

]∥∥∥∥∥ ≤ 1− γi − 2qTi x, i = 1, . . . , p,
(3)

where Qi = V
T
i Vi, i = 1, . . . , p. For a detailed discussion of SOCPs and their applications see [2,

18, 22].

The formulations (1) and (3) implicitly assume that the parameters defining the problem –

{(Qi,qi, γi), i = 1 . . . , p} – are known exactly. However, in practice these are estimated from

data, and are, therefore, subject to measurement and statistical errors [16]. Since the solutions

to optimization problems are typically sensitive to parameter fluctuations, the errors in the input

parameters tend to get amplified in the decision vector. This, in turn, leads to a sharp deterioration

in performance [3, 10].

The problem of choosing a decision vector in the presence of parameter perturbation was for-

malized by Ben-Tal and Nemirovski [4, 5] as follows:

minimize cTx

subject to F (x, ξ) ∈ K ⊂ Rm, ∀ξ ∈ U ,
(4)

where ξ are the uncertain parameters, U is the uncertainty set, x ∈ Rn is the decision vector, K
is a convex cone and, for fixed ξ ∈ U , the function F (x, ξ) is K-concave [4, 6]. The optimization

problem (4) is called a robust optimization problem. Ben-Tal and Nemirovski established that for

certain classes of uncertainty sets U , robust counterparts of linear programs, quadratic programs,

quadratically constrained quadratic programs, and semidefinite programs are themselves tractable

optimization problems. Robustness as applied to uncertain least squares problems and uncertain

semidefinite programs was independently studied by El Ghaoui and his collaborators [11, 12].

In keeping with the formulation proposed by Ben-Tal and Nemirovski, a generic robust convex

QCP is given by

minimize cTx

subject to xTQix+ 2qTi x+ γi ≤ 0, for all (Qi,qi, γi) ∈ Si, i = 1, . . . , p.
(5)

Ben-Tal and Nemirovski [4] investigated a version of (5) in which the uncertainty structures Si are
generalized ellipsoids and showed that the resulting robust optimization problem can be reduced to

a semidefinite program (SDP) [1, 22, 26]. In this paper we explore uncertainty structures for which

the corresponding robust problems can be reformulated as SOCPs. Our interest in this class of

structures stems from the fact that both the worst case and practical computational effort required

to solve SOCPs is at least an order of magnitude less than that needed to solve SDPs [2].

The organization of the rest of this paper is as follows. In Section 2 we propose three classes

of uncertainty sets for which a robust convex QCP can be reduced to an SOCP. In Section 3 we

present several applications where the natural uncertainty structures are combinations of those

presented in Section 2. Section 4 contains some concluding remarks.
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2 Uncertainty structures

In this section we introduce three classes of uncertainty sets for which the robust convex QCP (5)

can be reformulated as an SOCP.

2.1 Discrete and polytopic uncertainty sets

The simplest class of the uncertainty sets is a discrete set defined as follows.

Sa =
{
(Q,q, γ) : (Q,q, γ) = (Qj ,qj , γj),Qj º 0, j = 1, . . . , k

}
. (6)

The robust constraint xTQx + 2qTx + γ ≤ 0 for all (Q,q, γ) ∈ Sa is equivalent to the k convex

quadratic constraints

xTQjx+ 2qTj x+ γj ≤ 0, ∀j = 1, . . . , k. (7)

Thus, the resulting robust optimization problem is an SOCP.

The discrete uncertainty set (6) typically arises when one wants to be robust against several

scenarios – each (Qi,qi, γi) corresponds to a particular scenario [17]. A closely related related

uncertainty structure is the polytopic uncertainty set defined as follows.

Sb =
{
(Q,q, γ) : (Q,q, γ) =

k∑

j=1

λj(Qj ,qj , γj),Qj º 0, λj ≥ 0, ∀j,
n∑

j=1

λj = 1
}
. (8)

The robust constraint xTQx+ 2qTx+ γ ≤ 0, for all (Q,q, γ) ∈ Sb is equivalent to the constraint∑
j λj(x

TQjx + 2qTj x + γj) ≤ 0, for all λj ≥ 0,
∑

j λj = 1. The latter constraint is, in turn,

equivalent to the set of constraints:

xTQjx+ 2qTj x+ γj ≤ 0, ∀j = 1, . . . , k. (9)

From (7) and (9), it follows that the SOCP reformulations of the robust problems corresponding

to the discrete and the polytopic uncertainty sets are identical.

2.2 Affine uncertainty sets

Next, we propose two closely related affine uncertainty sets both of which are restricted versions of

the generalized ellipsoidal uncertainty sets introduced by Ben-Tal and Nemirovski [4].

In the first uncertainty set Sc, the parameter (Q,q, γ) is affinely perturbed by a single set of

perturbation parameters u, i.e.

Sc =
{
(Q,q, γ) :

(Q,q, γ) = (Q0,q0, γ0) +
∑k

j=1 ui(Qj ,qj , γj),

Qj º 0, j = 0, . . . , k,u ≥ 0, ‖u‖ ≤ 1

}
. (10)

Remark 1 In this case, the robust problem (5) is NP-hard if the sign constraint on u is relaxed

or if any of the Qj’s are indefinite [4].
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The following lemma shows that the robust convex quadratic constraint corresponding to Sc
can be reformulated as a collection of SOC constraints.

Lemma 1 The decision vector x ∈ Rn satisfies the robust constraint xTQx+2qTx+γ ≤ 0 for all

(Q,q, γ) ∈ Sc, where Sc is defined by (10), if and only if there exist f ∈ Rk
+ and ν ≥ 0 satisfying

∥∥∥∥∥

[
2Vjx

1− fj + γj + 2qTj x

]∥∥∥∥∥ ≤ 1 + fj − γj − 2qTj x, j = 1, . . . , k,
∥∥∥∥∥

[
2V0x

1− ν

]∥∥∥∥∥ ≤ 1 + ν,

‖f‖ ≤ −ν − 2qT0 x− γ0,

(11)

where Qj = V
T
j Vj, j = 0, . . . , k.

Proof: The constraint xTQx+ 2qTx+ γ ≤ 0 for all (Q,q, γ) ∈ Sc is equivalent to

xTQ0x+ 2qT0 x+ γ0 + max
{u:u≥0,‖u‖≤1}

{ k∑

j=1

uj(x
TQjx+ 2qTj x+ γj)

}
≤ 0, (12)

Let f ∈ Rk with

fj ≥ max{xTQjx+ 2qTj x+ γj , 0}, j = 1, . . . , k. (13)

Then (12) holds if and only if there exists f satisfying (13) and

xTQ0x+ 2qT0 x+ γ0 + ‖f‖ ≤ 0. (14)

The result follows from rewriting (14) as a collection of linear and SOC constraints.

In the uncertainty structure Sc the perturbations in the quadratic term Q and the affine term

(q, γ) is controlled by the same parameter u. However, in many applications the uncertainty in

the quadratic and affine terms are independent [16]. We model this situation by the following

uncertainty structure,

Sd =
{
(Q,q, γ) :

Q = Q0 +
∑k

j=1 uiQj ,Qj º 0, j = 0, . . . , k, ‖u‖ ≤ 1,

(q, γ) = (q0, γ0) +
∑k

j=1 vi(qj , γj), ‖v‖ ≤ 1

}
. (15)

Remark 2 Although we allow general u, the constraint Qi º 0 implies that the worst case per-

turbation u∗ ≥ 0. As in Remark 1, allowing indefinite Qi results in an NP-hard optimization

problem [4].

The following lemma establishes that the robust convex QCP corresponding to Sd can be reformu-

lated as an SOCP.
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Lemma 2 The decision vector x ∈ Rn satisfies the robust constraint xTQx+2qTx+γ ≤ 0 for all

(Q,q, γ) ∈ Sd, where Sd is defined by (15), if and only if there exist f ,g ∈ Rk and ν ≥ 0 such that

gj = 2qTj x+ γj , j = 1, . . . , k,∥∥∥∥∥

[
2Vjx

1− fj

]∥∥∥∥∥ ≤ 1 + fj , j = 1, . . . , k,

∥∥∥∥∥

[
2V0x

1− ν

]∥∥∥∥∥ ≤ 1 + ν,

‖f‖+ ‖g‖ ≤ −ν − 2qT0 x− γ0,

(16)

where Qj = V
T
j Vj, j = 0, . . . , k.

Proof: The robust convex quadratic constraint xTQx + 2qTx + γ ≤ 0 for all (Q,q, γ) ∈ Sd is

equivalent to

xTQ0x+ 2qT0 x+ γ0 + max
{u:u≥0,‖u‖≤1}

{ k∑

j=1

uj(x
TQjx)

}
+ max
{v:‖v‖≤1}

{ k∑

j=1

vj(2q
T
j x+ γj)

}
≤ 0. (17)

Thus, (17) holds if and only if there exist f ,g ∈ Rk such that fj ≥ xTQjx, gj ≥ 2qTj x + γj ,

j = 1, . . . , k, and

xTQ0x+ 2qT0 x+ γ0 + ‖f‖+ ‖g‖ ≤ 0. (18)

The result follows from rewriting (18) as a collection of linear and SOC constraints.

2.3 Factorized uncertainty sets

The next class of uncertainty sets is defined as follows.

Se =




(Q,q, γ0) :

Q = VTFV,F = F0 +∆ Â 0,∆ =∆T , ‖N− 1

2∆N−
1

2 ‖ ≤ η,N Â 0,
V = V0 +W ∈ Rm×n, ‖Wi‖g =

√
WT

i GWi ≤ ρi, ∀i,G º 0,
q = q0 + ζ, ‖ζ‖s =

√
ζTSζ ≤ δ,S Â 0.




, (19)

where Wi, i = 1, . . . , n, is the i-th column of the matrix W and the norm ‖A‖ of a symmetric

matrix A is either given by the L2-norm, i.e. ‖A‖ = max1≤i≤m{|λi(A)|}, or the Frobenius norm,

i.e. ‖A‖ =
√∑m

i=1 λ
2
i (A), where {λi(A), i = 1, . . . ,m} are the eigenvalues of the matrix A. The

uncertainty structure Se in (19) is quite general and includes as special cases: (i) fixed F (e.g.,

F = I, i.e. Q = VTV) and (ii) fixed V, i.e. only F is uncertain.

Although the uncertainty structure Se does not appear as natural as the discrete or the affine

uncertainty sets, it captures the structure of the confidence regions around the maximum likelihood

estimates of the parameters. See [16] for a detailed discussion of the structure of this uncertainty

set and its parametrization.

Lemma 3 below establishes that a robust quadratic constraint corresponding to (19) can be

reformulated as a collection of linear and SOC constraints.
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Lemma 3 The decision vector x ∈ Rn satisfies the robust convex quadratic constraint xTQx +

2qTx+γ ≤ 0 for all (Q,q, γ) ∈ Se, where Se is defined by (19), if and only if there exist τ, ν, σ, r ∈
R, u ∈ Rn and w ∈ Rm such that

τ ≥ 0,

ν ≥ τ + 1T t

σ ≤ λmin(H),

r ≥ ∑n
i=1 ρiui,

uj ≥ xj , j = 1, . . . , n,

uj ≥ −xj , j = 1, . . . , n,∥∥∥∥∥

[
2r

σ − τ

]∥∥∥∥∥ ≤ σ + τ,

∥∥∥∥∥

[
2wi

(λi − σ − ti)

]∥∥∥∥∥ ≤ (λi − σ + τi), i = 1, . . . ,m,

2δ
∥∥S− 1

2x
∥∥ ≤ −ν − 2qT0 x− γ0,

(20)

where H = G−
1

2 (F0 + ηN)G−
1

2 , H = QTΛQ is the spectral decomposition of H, Λ = diag(λi),

and w = QTH
1

2G
1

2V0x.

Proof: Fix V ∈ Se. Define ∆̃ = N−
1

2∆N−
1

2 , y = VTx and S1 = {F : F = F0 +∆ º 0,∆ =

∆T , ‖N 1

2∆N
1

2 ‖ ≤ η}. Then

max{xTVTFVx : F ∈ S1} = max
{
yT (F0 +∆)y :∆ =∆T , ‖N 1

2∆N
1

2 ‖ ≤ η,F0 +∆ º 0
}

= max
{
yTF0y + (N

1

2y)T ∆̃(N
1

2y) : ‖∆̃‖ ≤ η,F0 +N
1

2 ∆̃N
1

2 º 0
}
,

≤ max
{
yTF0y + (N

1

2y)T ∆̃(N
1

2y) : ‖∆̃‖ ≤ η
}
, (21)

≤ yTF0y + η(N
1

2y)T (N
1

2y), (22)

where (21) follows from relaxing the constraint F0 + N
1

2 ∆̃N
1

2 º 0 and (22) follows from the

properties of the matrix norm.

Since ‖∆̃‖ = max{|λi(∆̃)|} or
√∑

i λ
2
i (∆̃) and N Â 0, the bound (22) is achieved by

∆̃
∗
= η

(N
1

2y)(N
1

2y)T

‖N 1

2y‖2
,

unless y = 0. Thus, the right hand side of (21) is given by yT (F0 + ηN)y and is achieved by

∆̃
∗
= ηNyyT N

yT Ny
, unless y = 0. Since F0 +N

1

2 ∆̃
∗
N

1

2 º 0, it follows that the inequality (21) is, in

fact, an equality, i.e.

max
F∈S1

{
yTFy

}
= yT (F0 + ηN)y.

Therefore,

max
{(Q,q,γ)∈Se}

{
xTQx+ 2qTx+ γ

}
= γ0 + 2qT0 x+ δ‖S− 1

2x‖+ max
V∈Sv

{
xTVT (F0 + ηN)Vx

}
, (23)
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where Sv = {V : V = V0 +W, ‖Wi‖g ≤ ρi, i = 1, . . . ,m}. The rest of the proof reformulates the

robust quadratic constraint max{V∈Sv}

{
xTVT (I+ηN)Vx

}
≤ ν as a collection of SOC constraints.

Since the constraints ‖Wi‖g ≤ ρi, i = 1, . . . , n imply the bound,

‖Wx‖g =
∥∥∥

n∑

i=1

xiWi

∥∥∥
g
≤

n∑

i=1

|xi| ‖Wi‖g ≤
n∑

i=1

ρi |xi| , (24)

the optimization problem,

maximize ‖V0φ+Wx‖2

subject to ‖Wx‖g ≤
∑n

i=1 ρi |xi| ,
(25)

is a relaxation of
maximize ‖V0x+Wx‖2

subject to ‖Wi‖g ≤ ρi, i = 1, . . . , n.
(26)

The objective function in (25) is convex; therefore the optimal solutionW∗φ lies on the boundary

of the feasible set, i.e. ‖W∗x‖g = ρT |x|, where ρ = (ρ1, . . . , ρn)
T . But from (24), it follows that

W lies on the boundary only if the columns of the matrix W satisfy Wi = ρiv for some vector v

with ‖v‖g = 1. But any such choice ofWi is feasible for (26). Therefore (26) and (25) are, in fact,

equivalent.

Thus xTVT (F0 + ηN)Vx ≤ ν for all V ∈ Sv if and only if

(
V0x+ (ρT |x|)v

)T (
F0 + ηN

)(
V0x+ (ρT |x|)v

)
≤ ν (27)

for all ‖v‖g ≤ 1, i.e. 1− vTGv ≥ 0. Define y0 = V0x and r = ρT |x| then (27) is equivalent to

ν − yT0 (F0 + ηN)y0 − 2ryT0 (F0 + ηN)v − r2vT (F0 + ηN)v ≥ 0, (28)

for all v such that 1− vTGv ≥ 0. Before proceeding further, we need the following:

Lemma 4 (S-procedure) Let Fi(x) = x
TAix+2bTi x+ ci, i = 0, . . . , p be quadratic functions of

x ∈ Rn. Then F0(x) ≥ 0 for all x such that Fi(x) ≥ 0, i = 1, . . . , p, if there exist τi ≥ 0 such that

[
c0 bT0
b0 A0

]
−

p∑

i=1

τi

[
ci bTi
bi Ai

]
º 0.

Moreover, if p = 1 then the converse holds if there exists x0 such that F1(x0) > 0.

For a discussion of the S-procedure and its applications, see [7].

Since v = 0 is strictly feasible for 1 − vTGv ≥ 0, the S-procedure implies that (28) holds for

all 1− vTGv ≥ 0 if and only if there exists a τ ≥ 0 such that

M =

[
ν − τ − yT0 (F0 + ηN)y0 −ryT0 (F0 + ηN)

1

2

−r(F0 + ηN)
1

2y0 τG− r2I

]
º 0. (29)
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Let the spectral decomposition of H = G−
1

2 (F0 + ηN)G−
1

2 be QΛQT , where Λ = diag(λ),

and define w = QTH
1

2G
1

2y0 = Λ
1

2QTG
1

2y0. Observing that yT0 (F0 + ηN)y0 = wTw, we have

that the matrix M º 0 if and only if

M̄ =

[
1 0T

0 QTG
1

2

]
M

[
1 0T

0 G
1

2Q

]
=

[
ν − τ −wTw −rwTΛ

1

2

−rΛ 1

2w τI− r2Λ

]
º 0.

The matrix M̄ º 0 if and only if τ ≥ r2λi, for all i = 1, . . . ,m (i.e. τ ≥ r2λmax(H)), wi = 0 for

all i such that τ = r2λi, and the Schur complement of the nonzero rows and columns of τI− r2Λ

ν − τ −wTw − r2


 ∑

i:τ 6=r2λi

λiw
2
i

τ − r2λi


 = ν − τ −

∑

i:σλi 6=1

w2
i

1− σλi
≥ 0,

where σ = r2

τ
. It follows that (27) holds for all vTGv ≤ 1 if and only if there exists τ, σ ≥ 0 and

t ∈ Rm
+ satisfying,

ν ≥ τ + 1T t,

r2 = στ,

w2
i = (1− σλi)ti, i = 1, . . . ,m,

σ ≤ 1
λmax(H) .

(30)

It is easy to establish that there exist τ, σ ≥ 0, and t ∈ Rm
+ that satisfy (30) if and only if there

exist τ, σ ≥ 0, and t ∈ Rm
+ that satisfy (30) with the equalities replaced by inequalities.

From [22] (see Section 6.2.3) and [18], we have that for z ∈ Rn, x ∈ R, and y ∈ R, x, y ≥ 0,

zTz ≤ xy ⇔
∥∥∥∥∥

[
2z

x− y

]∥∥∥∥∥ ≤ x+ y.

Note that the constraint r2 ≤ στ and τ ≥ 0 imply that σ ≥ 0. Therefore, replacing the equalities in

(30) and reformulating the inequalities as SOC constraints, we have that xTVT (F0 + ηN)Vx ≤ ν

for all V ∈ Sv if and only if the following system of linear and second-order cone constraints holds,

τ ≥ 0,

ν ≥ τ + 1T t

σ ≤ λmin(G),

r ≥ ∑n
i=1 ρi |xi| ,∥∥∥∥∥

[
2r

σ − τ

]∥∥∥∥∥ ≤ σ + τ,

∥∥∥∥∥

[
2wi

(1− σλi − ti)

]∥∥∥∥∥ ≤ (1− σλi + ti), i = 1, . . . ,m.

(31)

The constraint r ≥∑m
i=1 ρi |xi| is not linear but it can be converted into one by introducing a new

variable z such that u ≥ |x|, i.e. uj ≥ xj and uj ≥ −xj , i = j, . . . , n.

The result now follows by replacing max{V∈Sc}

{
xTVT (F0 + ηN)Vx

}
in (23) by the bound ν.
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There are several closely related versions of the factorized uncertainty set Se that also result in

robust problems that can be reduced to SOCPs. These include the special case where the matrix

F is known, i.e. η = 0; and the variant of Se where F−1 = F−10 +∆ Â 0, with ‖F
1

2

0∆F
1

2

0 ‖ ≤ η,

η < 1. For details of these alternative formulations and their relation to probabilistic guarantees

on the performance of the optimal solution see [16].

3 Applications

In this section we present several applications of robust convex QCPs. We show that the uncertainty

in these applications can be adequately modeled by the uncertainty sets introduced in the previous

section.

3.1 Robust mean-variance portfolio selection

Suppose an investor wants to invest in a market with n assets. The random returns on the assets

is given by the random return vector

r = µ+VT f + ε,

where µ ∈ Rn is the mean return vector, f ∼ N (0,F) ∈ Rm is the vector of returns on the

factors that drive the market, V ∈ Rm×n is the factor loadings matrix and ε ∼ N (0,D) is the

residual returns vector. Here x ∼ N (µ,Σ) denotes that x is a multivariate Normal random variable

with mean vector µ and covariance matrix Σ. In addition, we assume that the vector of residual

returns ε is independent of the vector of factor returns f , the covariance matrix F Â 0 and the

covariance matrix D = diag(d) Â 0, i.e. di > 0, i = 1, . . . , n. Thus, the vector of asset returns

r ∼ N (µ,VTFV +D).

The investor’s position in the market is described by a portfolio vector φ ∈ Rn, where φj

denotes the fraction of the capital invested in asset j, j = 1, . . . , n. The random return rφ on

a portfolio φ is given by rφ = rTφ. The objective is to choose a portfolio that maximizes some

measure of “return” on the investment subject to appropriate constraints on the associated “risk”.

Markowitz [20, 21] proposed a model for portfolio selection in which the “return” is the expected

value E[rφ] of the portfolio return, the “risk” is the variance Var
[
rφ
]
of the return, and the optimal

portfolio φ∗ is one that has the minimum variance amongst those that a return of at least α, i.e.

φ∗ is the optimal solution of the convex quadratic optimization problem

minimize Var
[
rφ
]

subject to E[rφ] ≥ α,

1Tφ = 1.

(32)

The optimization problem (32) is called the minimum variance portfolio selection problem. Other

variants include the maximum return problem and the maximum Sharpe ratio problem.
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Note that the Markowitz model implicitly assumes that the mean return vector E[r] and the

covariance matrix Var
[
r
]
are known with certainty. This mean-variance model has had a profound

impact on the economic modeling of financial markets and the pricing of assets. In 1990, Sharpe

and Markowitz shared the Nobel Memorial Prize in Economic Sciences for this work. In spite of

the theoretical success of the mean-variance model, practitioners have shied away from it. The

primary criticism leveled against the Markowitz model is that the optimal portfolio φ∗ is extremely

sensitive to the market parameters (E[r],Var
[
r
]
): since these parameters are estimated from noisy

data, φ∗ often amplifies noise.

One solution to the sensitivity of φ∗ to the perturbation of the problem data is to consider a

robust version of the Markowitz problem (32). To this end, we define the uncertainty structures as

follows. The covariance matrix F of the factor returns f is assumed to belong to

Sf =
{
F : F−1 = F−10 +∆ º 0,∆ =∆T , ‖F

1

2

0∆F
1

2

0 ‖ ≤ η
}
; (33)

the uncertainty set Sd for the matrix D is given by

Sd =
{
D : D = diag(d), di ∈ [di, di], i = 1, . . . , n

}
; (34)

the factor loadings matrix V belongs to the elliptical uncertainty set Sv given by

Sv =
{
V : V = V0 +W, ‖Wi‖g ≤ ρi, i = 1, . . . , n

}
, (35)

where Wi is the i-th column of W and ‖w‖g =
√
wTGw; and the mean returns vector µ lies in

Sm = {µ : µ = µ0 + ξ, |ξi| ≤ γi, i = 1, . . . , n} . (36)

The uncertainty sets (Sf , Sv, Sd, Sm) mimic the structure of the confidence region around the mini-

mum mean square estimates of (µ,V,F). The justification for this choice of uncertainty structures

and suitable choices for the matrixG, and the bounds ρi, γi, di, di, i = 1, . . . , n, and η are discussed

in [16].

The robust analog of the Markowitz mean-variance optimization problem (32) is given by

minimize max{V∈Sv ,D∈Sd}Var
[
rφ
]

subject to min{µ∈Sm}E[rφ] ≥ α,

1Tφ = 1.

(37)

We expect that the sensitivity of the optimal solution of this mathematical program to parameter

fluctuations will be significantly smaller than it would be for its classical counterpart (32).

Since the return rφ ∼ N (µTφ,φT (VTFV +D)φ), we can write (37) as

minimize max{V∈Sv}

{
φTVTFVφ

}
+max{D∈Sd}

{
φTDφ

}

subject to min{µ∈Sm} µ
Tφ ≥ α,

1Tφ = 1,

(38)
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which in turn is equivalent to the following robust quadratically constrained problem,

minimize λ+ δ,

subject to φTVTFVφ ≤ λ, ∀V ∈ Sv,F ∈ Sf

φTDφ ≤ δ, ∀D ∈ Sd,

µTφ ≥ α, ∀µ ∈ Sm,

1Tφ = 1.

(39)

Since the uncertainty sets Sm × Sv × Sf and Sd are special cases of the factorized uncertainty

structure proposed in (19), (39) can be reduced to an SOCP. For details on robust portfolio selection

problems and the performance on real market data see [16].

3.2 Robust hyperplane separation

Let L =
{
(xi, yi), i = 1, . . . , l

}
, yi ∈ {+1,−1}, xi ∈ Rd, ∀i, be a labeled set of training data.

The objective in the hyperplane separation problem is to choose a hyperplane (w, b), b ∈ R,

w ∈ Rd, that maximally separates the “negative examples”, i.e. xi with yi = −1, from the

“positive examples”, i.e. xi with yi = +1. Then given this separating hyperplane (w, b), a new

sample x is classified as “positive” provided wTx + b ≥ 0, otherwise it is classified as “negative”.

Pattern classification using hyperplanes is called linear discrimination.

In a typical application of linear discrimination, the hyperplane (w, b) is chosen by solving the

following quadratic program [8, 19, 28].

minimize 1
2 ‖w‖

2 + C
(∑

i=1 ξi
)
,

subject to wTxi + b ≥ 1− ξi, if yi = +1,

wTxi + b ≥ 1 + ξi, if yi = −1,
ξi ≥ 0, i = 1, . . . , l.

(40)

Instead of solving (40), one typically solves its dual given by

maximize 1Tα− 1
2

∑l
i,j=1 αiαj(yixi)

T (yjxj),

subject to
∑l

i=1 αiyi = 0,

0 ≤ αi ≤ C, i = 1, . . . , l.

(41)

The optimal vector w∗ =
∑l

i=1 α
∗
ixi, where α

∗ is the optimal solution of the dual (41). The optimal

intercept b∗ is set by the complementary slack conditions (for a detailed discussion see [8]).

In several applications of linear discrimination, the training data xi is corrupted by measurement

noise. A simple additive model for measurement error is given by

xi = x̄i + ui, i = 1, . . . , l,

where x̄i is the true value of the training data and ui is the measurement noise. Typically, one

assumes that ‖ui‖ ≤ ρ, i = 1, . . . , l. If the measurement noise {ui : i = 1, . . . , l} were known, the
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appropriate dual problem would be

maximize 1Tα− 1
2

∑l
i,j=1 αiαj(yi(xi − ui))T (yj(xj − uj)),

subject to
∑l

i=1 αiyi = 0,

0 ≤ αi ≤ C, i = 1, . . . , l.

(42)

When the perturbations due to measurement noise are unknown, a conservative approach is to

replace the objective function in (42) by 1Tα − 1
2 max{‖ui‖≤ρ}

{∑l
i,j=1 αiαj(yi(xi − ui))T (yj(xj −

uj))
}
, i.e. solve the following robust quadratically constrained problem,

maximize τ,

subject to
∑l

i=1 αi − 1
2α

TQα ≥ τ, ∀Q ∈ S,∑l
i=1 αiyi = 0,

0 ≤ αi ≤ C, i = 1, . . . , l,

(43)

where the uncertainty set

S =
{
Q : Q = VTV,V = V0 +U, ‖Ui‖ ≤ ρ,V0 = [x1, . . . ,xl]diag(y)

}
(44)

belongs to class of factorized uncertainty structures defined in (19). Thus, (44) can be reformulated

as an SOCP. This technique can be extended to general support vector machines [28] as well.

3.3 Linear least squares problem with deterministic and stochastic uncertainty

Consider the following linear least squares problem,

min
{x∈Rn}

‖Ax− b‖2 , (45)

whereA = [a1, . . . ,am]
T ∈ Rm×n and b ∈ Rn. Ifm ≥ n and the matrixA has full column rank, the

solution of this optimization problem is given by x∗ =
(
ATA)−1ATb [13]. Even when additional

linear and convex quadratic constraints are imposed on the solution x, such as ‖x‖2 ≤ M , the

linear least squares problem (45) is still a convex QCP.

In many applications of least squares problems, the problem data (A,b) is either estimated

from empirical data or is the result of measurement, and therefore, subject to perturbations. In

order to reduce the sensitivity of the decision x to perturbations in the data, El Ghaoui and Lebret

formulated the following robust version of (45)

min
x

max{
[A,b]:‖[A,b]−[A0,b0]‖≤ρ

} ‖Ax− b‖2 , (46)

where ‖·‖ is the Frobenius norm, and showed that (46) can be reformulated as an SOCP [11].

However it is not clear that the uncertainty set that appears above is natural, since it applies

to [A b] at once.
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In this paper, we propose the following uncertainty structure for the rows ai ∈ Rn, i = 1, . . . ,m

of the data matrix A:

S =
{
a : a = a0 +

k∑

j=1

vjaj +
l∑

j=1

ujξj
}
, (47)

where without any loss of generality ‖v‖ ≤ 1, ‖u‖ ≤ 1, and ξj ∼ N (0,Ωj), j = 1, . . . , l. Without

the stochastic term, the uncertainty set (47) has the affine structure considered in [4, 5, 6]. The

term
∑l

j=1 u
jξj models the imperfect knowledge of the stochastic perturbations in a – the decision

maker knows the total variance and modes Ωj but does not know the variance of each of the

individual modes. In typical applications, the matrix Ωj = ωj(ωj)T , or equivalently ξj = (ωj)TZ

for Z ∼ N (0, I), where the vector ωj is determined by the estimation algorithm or the signal

network.

The robust least squares problem corresponding to (47) is given by

min
x

{ m∑

i=1

max
{(ui,vi)}

{
E[(aTi x− bi)

2]
}}

, (48)

where each ai belongs to a uncertainty set of the form in (47) for appropriately chosen {aji : j =

1, . . . , ki} and {Ωj
i : j = 1, . . . , li}, i = 1, . . . ,m.

For a fixed a in S and b ∈ R, the expected error E[(aTx− b)2] is given by

E[(aTx− b)2] =
(
(a0)Tx+

k∑

j=1

vj(aj)Tx− b
)2

+
l∑

j=1

(uj)2xTΩjx. (49)

The constraint E[(aTx− b)2] ≤ δ, for all a ∈ S, is equivalent to the following set of constraints,

| aTx− b |≤ t, ∀a ∈ S1 = {a : a0 +
∑k

j=1 v
jaj , ‖v‖ ≤ 1},

t2 + xTQx ≤ δ, ∀Q ∈ S2 = {Q : Q =
∑l

j=1 α
jΩj ,

∑l
j=1 α

j ≤ 1, αj ≥ 0, ∀j}.
(50)

From (48), (49) and (50), it follows that the robust optimization problem (48) is equivalent to the

following robust convex QCP

minimize
∑m

i=1 δi,

subject to t2i + x
TQix ≤ δi, Qi ∈ Si2, i = 1, . . . ,m,

aTi x− bi ≤ ti, ai ∈ Si1, i = 1, . . . ,m,

aTi x− bi ≥ −ti, ai ∈ Si1, i = 1, . . . ,m.

(51)

The set Si1, i = 1, . . . ,m, is a special case of the affine uncertainty set defined in (15) and S i2,
i = 1, . . . ,m, belongs to the class of polytopic uncertainty sets defined in (8). Therefore, the robust

problem (51) can be reduced to an SOCP.
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3.4 Equalizing uncertain channels

By suitably sampling the input and output signals, the input-output relation of any linear time-

invariant communication system can be written as follows [25]:

yk =
m−1∑

i=0

hixk−i + sk,

= h0xk +
m−1∑

i=1

hixk−i + sk, (52)

where {xk, k ≥ 0} are the samples of the input signal, {yk, k ≥ 0} are the samples of the output

signal, {hi, i = 0, . . . ,m} is the impulse response of the channel, and {sk, k ≥ 0} are the samples of

the channel noise. We assume that the channel impulse response is finite, i.e. m < ∞. The term∑m−1
i=1 hixk−i is called the inter-symbol interference (ISI). In order to recover the input sequence

one has to remove the ISI and the effects of the noise.

The Z-transform W (z) of any sequence {wk : k ≥ 0} is defined by

W (z) =
∑

i

wiz
i, (53)

where z is a complex number. Under fairly general conditions [25], the sequence {wk : k ≥ 0} can

be recovered from {W (z) : |z| = 1}. Therefore, we will treat the sequence and its Z-transform as

equivalent. Taking the Z-transform of both sides of (52), we get

Y (z) = H(z)X(z) + S(z), (54)

where Y (z), H(z), X(z) and S(z) are the Z-transforms of {yk}, {hk}, {xk} and {sk} respectively.

From (54) we have that
1

H(z)
Y (z) = X(z) +

S(z)

H(z)
, (55)

i.e. one can remove the ISI by processing the output sequence through a linear time-invariant filter

with impulse response G(z) = 1
H(z) [25].

The process of removing ISI using a linear time-invariant filter is called channel equalization.

Thus, (55) describes a technique for channel equalization. This technique, although simple, is not

practical because the impulse response G(z) is infinite, i.e. an infinite number of output samples

are required to reconstruct one input sample.

Channel equalization using finite impulse response (FIR) filters is possible provided the output

signal is sampled at a faster rate [24]. Oversampling the output signal at a rate p times faster than

the input is equivalent to p parallel input-output channels that all see the same input sequence.

Let Hj(z) =
∑m−1

i=0 hjiz
i, j = 1, . . . , p denote the channel responses of the p parallel input-output

channels obtained by oversampling the output. Then, the output Yj(z) of the j-th channel is given

by

Yj(z) = Hj(z)X(z) + Sj(z). (56)
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Suppose the output Yj(z) is passed through a filter with impulse response Gj(z) =
∑n−1

i=0 gjiz
i,

n < ∞, and the output signals added together. Then, the effective input-output relation is given

by

Y (z) =
( p∑

j=1

Gj(z)Hj(z)
)
X(z) +

p∑

j=1

Gj(z)Sj(z). (57)

Suppose we require the effective input-output channel be D(z) =
∑l−1

j=0 djz
j , for some l ≤ m + n.

Then {Gj(z), j = 1, . . . , p} must satisfy the polynomial equation

p∑

j=1

Gj(z)Hj(z) = D(z),

or equivalently
p∑

j=1

Thj
gj = d, (58)

where

d =




d0

d1
...

dm+n−2



, Thj

=




hj0 0 0 . . . 0

hj1 hj0
. . .

. . .
...

hj2 hj1 hj0
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . hj0

hj,m−1
. . .

. . .
. . . hj1

0
. . .

. . .
. . . hj2

...
. . . haM−1

. . . hj3
...

. . .
. . .

. . .
...

0 . . . . . . 0 hj,m−1




︸ ︷︷ ︸
(n+m−1)×n

, gj =




gj0

gj1
...

gj,n−1



.

Under fairly general conditions [24, 23] the system of equations (58) has a solution provided p ≥ 2,

i.e. on can find finite impulse response filters Gj(z), j = 1, . . . , p that can shorten the channel to

any given target D(z).

This equalization method assumes that the channel responses {Hj(z), j = 1, . . . , p} are known.

In practice, the channel responses are estimated by transmitting a known finite length training

sequence and, therefore, the estimates are subject to statistical errors. We model the uncertainty

in the channel response as follows,

h̄j = hj + ujξj , j = 1, . . . , p (59)

where h̄j is the true value of the j-th channel response, hj is our estimate of the j-th channel

response, ξj ∼ N (0,Ωi), Tr(Ωi) = 1, j = 1, . . . , p, E[ξjξ
T
k ] = 0, j 6= k, and ‖u‖ ≤ σ2. The uncer-

tainty structure (59) reflects our limited knowledge of the noise in each of the p parallel channels.
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The total noise variance is
∑p

j=1 u
2
j Tr(Ωj) = σ2 but the noise variance of the individual channels

is not known. The filters {gj , j = 1, . . . , p} are now chosen by solving the robust optimization

problem

min
{gj :j=1,...,p}

max
{u:‖u‖≤σ2}

E

[∥∥∥
p∑

j=1

Th̄j
gj − d

∥∥∥
2
]

= min
{gj :j=1,...,p}

max
{u:‖u‖≤σ2}

E

[∥∥∥
p∑

j=1

Thj
gj − d+

p∑

j=1

ujTξj
gj

∥∥∥
2
]
,

= min
{gj :j=1,...,p}

max
{u:‖u‖≤σ2}

E

[∥∥∥
p∑

j=1

Thj
gj − d+

p∑

j=1

ujTgj
ξj

∥∥∥
2
]
,

= min
{gj :j=1,...,p}

{∥∥∥
p∑

j=1

Thj
gj − d

∥∥∥
2
+ max
{u:‖u‖≤σ2}

{ p∑

j=1

u2j Tr
(
TT
gj
Tgj

Ωj

)}}
,

= min
{gj :j=1,...,p}

{∥∥∥
p∑

j=1

Thj
gj − d

∥∥∥
2
+ max
{u:‖u‖≤σ2}

{ p∑

j=1

gj(u
2
jΛj)gj

}}
, (60)

where Λj is set by the identity gjΛjgj = Tr
(
TT
gj
Tgj

Ωj

)
. From (60) it follows that the robust

equalization problem is equivalent to the following robust convex QCP

minimize δ + ν,

subject to
∥∥∥Tg − d

∥∥∥
2
≤ δ,

gTQg ≤ ν, ∀Q ∈ S,
(61)

where g = [gT1 , . . . ,g
T
p ]
T ∈ Rnp, T = [Th1

, . . . ,Thp
] ∈ R(n+m−1)×(np), and the uncertainty set

S =
{
Q : Q = diag(Q1, . . . ,Qp),Qj = αjΛj ,

p∑

j=1

αj ≤ 1, αj ≥ 0, j = 1, . . . , p
}
, (62)

belongs to the class of polytopic uncertainty sets described in (8). Therefore, (61) can be reformu-

lated as an SOCP.

3.5 Robust estimation in uncertain statistical models

Suppose x ∈ Rn is a Gaussian random variable with a priori distribution x ∼ N (µ,Σ) with an

unknown mean µ and covariance

Σ ∈ S1 =
{
Σ : Σ−1 = Σ−10 +∆ º 0,∆ =∆T ,

∥∥Σ
1

2

0∆Σ
1

2

0

∥∥ ≤ η
}
. (63)

We will assume that η < 1. The structure (63) is precisely the confidence region associated with

the maximum likelihood estimate of the covariance Σ of x. See [16] for details.

Suppose a vector of measurements y ∈ Rm is given by the linear observation model

y = Cx+ d, (64)
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where C ∈ Rm×n is the known regression matrix, and the disturbance vector d ∼ N (0,D),

independent of x, with

D ∈ S2 =
{
D :

D = VTFV,F = F0 +∆ º 0, ‖N− 1

2∆N−
1

2 ‖ ≤ η,

V = V0 +W, ‖Wi‖ ≤ ρi, i = 1, . . . ,m, ‖∆‖ ≤ η

}
. (65)

The uncertainty set (19) is quite general. For example, one can control the rank of the covariance

matrix D by appropriately setting the dimension of F0 and model any norm-like perturbation by

suitably choosing N.

Given the vector of observations y and an a priori unbiased estimate µ̄ of the mean vector µ,

we consider a linear unbiased estimator of the form

µ̂ = (I−KC)µ̄+Ky, (66)

where the gain matrix K ∈ Rn×m is to be determined. Since µ̄ is unbiased, the estimate µ̂ is also

unbiased. The covariance P of the a posteriori estimate µ̂ is given by

P ≡ E[(µ̂− µ)(µ̂− µ)T ] = (I−KC)TΣ(I−KC) +KTDK. (67)

The non-robust version of this measurement model (i.e. Σ = Σ0 and D = D0 for fixed Σ0

and D0) is the well-known Gaussian linear stochastic model [14]. The robust measurement model

developed here is a variant of the model proposed by Calafiore and El Ghaoui [9] where the a priori

covariance Σ was known exactly and the noise covariance

D ∈
{
D : D−1 = D−10 + L∆R+RT∆TLT º 0, ‖∆‖ ≤ 1

}
.

They show that the problem of choosing the gain matrix K to minimize the worst-case value of

Tr(P) or det(P) can be reduced to an SDP.

In this paper, we are interested in minimizing the worst-case variance along a given fixed set of

vectors {vj : ‖vj‖ = 1, j = 1, . . . , k}, i.e. we want to solve the following optimization problem

min
K

max
{D∈S}

max
{1≤j≤k}

{
vTj (I−KC)TΣ(I−KC)vj + vTj KTDKvj

}
, (68)

or equivalently, the robust quadratically constrained problem,

minimize ν,

subject to vTj (I−KC)TΣ(I−KC)vj ≤ δj , Σ ∈ S1, j = 1, . . . , k,

vTj K
TDKvj ≤ ν − δj , ∀D ∈ S2, j = 1, . . . , k.

(69)

If we fix K, from Lemma 3 in [16] it follows that

max
Σ∈S1

{
vTj (I−KC)TΣ(I−KC)vj

}
=

{
∞ η ≥ 1,

1
(1−η)v

T
j (I−KC)TΣ0(I−KC)vj , η < 1.

Thus, η < 1 implies that the first constraint in (69) can be reformulated as a collection of SOC

constraints. Fix an index j and let yj = Kvj . Since the uncertainty set S belongs to the to the

class of factorized uncertainty sets defined in (19), Lemma 3 implies that that the robust quadratic

constraint vTj K
TDKvj = y

T
j Dyj ≤ ν − δj , for all D ∈ S2, can be reformulated as a collection of

linear and SOC constraints. Thus, the robust problem (69) can be transformed into an SOCP.
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4 Conclusion

In this paper we study robust convex quadratically constrained programs. Ben-Tal and Nemirovski

initiated the study of these problems and showed that for generalized ellipsoidal uncertainty sets

these robust problems can be reformulated as SDPs [4] (see also [6]). In this work, our focus was on

identifying uncertainty structures that allow an SOCP reformulation for the corresponding robust

convex QCPs. In Section 2 we proposed three different classes of uncertainty sets that meet this

criterion.

Adding robustness reduces the sensitivity of the optimal decision to fluctuations in the param-

eters and can often result in significant improvement in performance [3, 16, 27]. Typically, the

complexity of the deterministic reformulation of the robust problem is higher than the non-robust

version of the problem. However, since the worst case complexity of convex QCPs is comparable

to that of SOCPs, the results in this paper show that one can add robustness to convex QCPs

with a relatively modest increase in the computational effort. Moreover, the examples presented in

Section 3 show that the natural uncertainty sets for optimization problems arising a wide variety

of application areas belong to the classes introduced in Section 2.

An important issue with regards to robustness is that of parametrization of the uncertainty

structures, i.e. setting the parameters that define the uncertainty structures. In some cases, such as

the polytopic uncertainty (8), the parametrization is clear – the uncertainty set is defined by scenario

analysis. However, in others, such as the factorized uncertainty set (19), the parametrization is not

obvious – in [16] it is shown that the factorized uncertainty set is parametrized by the confidence

regions corresponding to statistical technique used to estimate the parameters of the original non-

robust problem.
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